Truncations of Random Unitary Matrices and Young Tableaux

نویسنده

  • Jonathan Novak
چکیده

Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). For any k ≤ d, and any k × k submatrix Uk of U, we express the average value of |Tr(Uk)| as a sum over partitions of n with at most k rows whose terms count certain standard and semistandard Young tableaux. We combine our formula with a variant of the Colour-Flavour Transformation of lattice gauge theory to give a combinatorial expansion of an interesting family of unitary matrix integrals. In addition, we give a simple combinatorial derivation of the moments of a single entry of a random unitary matrix, and hence deduce that the rescaled entries converge in moments to standard complex Gaussians. Our main tool is the Weingarten function for the unitary group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncations of a Random Unitary Matrix and Young Tableaux

Abstract. Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). We express the moments of the trace of any submatrix of U as a sum over partitions whose terms count certain standard and semistandard Young tableaux. Using this combinatorial interpretation, we obtain a simple closed form for the moments of an individual entry of a random unitary matrix and ...

متن کامل

Combinatorics of Truncated Random Unitary Matrices

We investigate the combinatorics of truncated Haar-distributed random unitary matrices. Specifically, if U is a random matrix from the unitary group U(d), let Uk denote its k × k upper left corner, where 1 ≤ k ≤ d. We give an explicit combinatorial formula for the moments ∫ U(d) |Tr(Uk)|dU in terms of pairs of Standard Young Tableaux on shapes that are not neccessarily the same. This formula ca...

متن کامل

Truncations of random unitary matrices

We analyse properties of non-Hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N > M , distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ...

متن کامل

A Note on Convergence of Moments for Random Young Tableaux

In recent work of Baik, Deift and Rains convergence of moments was established for the limiting joint distribution of the lengths of the first k rows in random Young tableaux. The main difficulty was obtaining a good estimate for the “tail” of the distribution and this was accomplished through a highly nontrival Riemann-Hilbert analysis. Here we give a simpler derivation. A conjecture is stated...

متن کامل

On Convergence of Moments for Random Young Tableaux and a Random Growth Model

In recent work of Baik, Deift and Rains convergence of moments was established for the limiting joint distribution of the lengths of the first k rows in random Young tableaux. The main difficulty was obtaining a good estimate for the tail of the distribution and this was accomplished through a highly nontrival Riemann-Hilbert analysis. Here we give a simpler derivation. The same method is used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007